As electric vehicles become a daily reality across Europe, the charging cable has quietly become one of the most critical and most overlooked components in the charging chain. While wallboxes, vehicles, and batteries often get the spotlight, the cable connecting them plays a decisive role in how safely and efficiently energy is transferred.
At Voldt®, EV charging cables are engineered with these real-world conditions in mind. Rather than designing only to the minimum allowed by standards, cable specifications are chosen to remain stable under prolonged high-current charging, varying ambient temperatures, and daily mechanical handling.
Why Cable Thickness Matters More Than Most People Think
At its core, EV charging is about moving electrical current from the grid into a vehicle's battery. Every conductor resists that flow to some degree, and that resistance converts part of the energy into heat. Resistance increases as cables get longer or thinner, and heat generation increases with the square of the current. At 32A, which is the current used for 7.4 kW single-phase and 22 kW three-phase AC charging, even relatively small differences in cable design can lead to noticeable changes in temperature and efficiency.
Copper, Aluminum, and Why Material Choice Matters
Copper remains the most commonly used material in flexible EV charging cables because it combines low electrical resistance, good mechanical strength, and stable behavior under repeated heating cycles. For cables that are repeatedly coiled, uncoiled, and handled in daily use, copper is generally the preferred option. This preference is more about predictable performance over thousands of charging cycles than it is about maximum conductivity on paper.
4 mm² vs 6 mm²: What Standards Allow and What Engineering Recommends
One of the most common questions in EV charging is whether a 4mm2 cable is sufficient for 32A operation. From a standards perspective, 4mm2 conductors can be rated for 32A under specific conditions like short cable length and moderate ambient temperature. However, EV charging is classified as a continuous load, meaning current may flow for several hours without interruption.
For this reason, Voldt® designs its 32A AC charging cables with 6mm2 copper conductors as a baseline, even in scenarios where 4mm2 might technically meet minimum requirements. This approach prioritizes thermal stability and predictable performance over theoretical compliance. Using a 6mm2 conductor instead of 4mm2 reduces electrical resistance by roughly one third, which results in lower operating temperatures and reduced stress on insulation materials.
Heat, Voltage Drop, and Real-World Cable Lengths
As cable length increases, resistance and heat generation increase as well. Over runs of 10 to 15 meters, the difference between 4mm2 and 6mm2 becomes more pronounced. Voldt® targets voltage drops well below one percent, not because standards require it, but because it helps maintain stable charging behavior across different vehicles and installations.